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Abstract 

CHANGES IN ALUMINUM, CADMIUM, CHROMIUM, COPPER, NICKEL, LEAD, 

AND ZINC CONCENTRATIONS IN WATER, SEDIMENT, AND FISH TISSUES OVER 

2 YEARS FOLLOWING THE 2008 KINGSTON, TN COAL ASH SPILL. (August 2011) 

Yosuke Sakamachi, B.S. Appalachian State University 

M.S. Appalachian State University 

Chairman: Shea Tuberty, Ph.D. 

  On December 22, 2008, TVA’s sixty-foot wall enclosing several decades of stored 

wet coal fly ash (CFA) collapsed and released 4.13 million cubic meters of CFA into the 

Watts Bar Reservoir in Kingston, TN. CFA is known to contain toxic elements such as 

aluminum, cadmium, chromium, copper, nickel, lead, and zinc which can become 

bioavailable to the aquatic biota and pose a threat to the ecosystem. In this study, analysis of 

sediment, water, and fish samples was conducted from the spill and nearby sites for the 

elements listed above. The fish of interest in this study were the largemouth bass 

(Micropterus salmoides), redear sunfish (Lepomis microlophus), gizzard shad (Dorosoma 

cepedianum), and channel catfish (Ictalurus punctatus). Elevated levels of these metals were 

observed in the sediment for two years following the spill except for copper. The aluminum, 

copper, and lead contents in the water were initially elevated Above the EPA Criterion 

Continuous Concentration (EPA CCC) after the spill in January 2009, though these values 

decreased below the EPA CCC by May 2010. Elevations of these metals were observed in a 

subset of the fish tissues shortly after the spill, though our study suggests that these levels 

were not sustained and are not of toxicological concern.
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Introduction 

The Tennessee Valley Authority (TVA) Kingston Fossil Plant is a coal-fired power plant that 

generates 10 billion kilowatt-hours of electricity each year providing energy for about 

670,000 homes while consuming approximately 4.6 x 10
6
 metric tons per year when 

operating at full capacity (1). On December 22, 2008, TVA’s 18 meter wall enclosing several 

decades of stored wet coal fly ash (CFA) collapsed, releasing 4.13 x 10
6 

m
3
 of CFA into the 

surrounding land and Emory River in Kingston, TN (1). The Emory River joins the Clinch 

River 3.2 km downstream of the spill and then converges with the Tennessee River 6.4 km 

further downstream, forming the Watts Bar Reservoir (Figure 1).  

CFA is known to contain elevated levels of toxic elements such as As, Cd, Cr, Cu, Ni, 

Pb, and Se (2). Given the appropriate environmental conditions, these elements can become 

bioavailable and may pose a threat to the aquatic ecosystems in the Emory, Clinch, and 

Tennessee Rivers. Some of these environmental conditions include: water hardness, pH, and 

chelating agents present in the system such as dissolved organic matter (3, 4). Metals exist in 

their ionic form under acidic conditions, becoming dissolved in the water column and can be 

readily transported across biological membranes such as fish gills and intestinal lining (2, 5, 

6). Ca
2+

 and Mg
2+ 

can compete against other metal cations for biotic ligands such as gill 

epithelial surfaces and intestinal linings, saturating potential binding sites to reduce toxic 

effects (7, 8). Under alkaline conditions, these toxic elements can form soluble or insoluble 

complexes with organic and inorganic substrates forming carbonates, oxides, chlorides, and 

hydroxides (4, 5, 6). These suspended species are biologically unavailable due to



precipitation and thus its removal from mode of action. The purpose of this study was to 

provide a two-year assessment of the potential accumulation of toxic elements in fish tissue 

and their associated impacts on the population from the TVA spill. The research focused on 

measurements of toxic elements in sediments, water, and fish samples in the vicinity of the 

CFA spill. This study will contribute to the better understanding of toxic element 

mobilization in a large lotic and lentic aquatic ecosystem, namely the Watts Bar reservoir and 

the contributing Emory and Clinch River systems.   

 



Analytical Methods and Materials 

Fish, sediment, and water samples were collected from the Emory, Clinch, and the 

Tennessee Rivers in east Tennessee, USA on a quarterly basis. Samplings were conducted at 

five routine sites in these rivers including: Emory River Mile 4.0 (ERM4.0), ERM2.0, Clinch 

River Mile 5.5 (CRM5.5), CRM3.5, and the Tennessee River Mile 567 (TRM567) (Figure 

1). Samples were collected on January 2009 (17 days after the spill), March 2009 (88 days 

after the spill), July 2009 (228 days after the spill), January 2010 (379 days after the spill), 

May 2010 (499 days after the spill), September 2010 (676 days after the spill), and January 

2011 (793 days after the spill).  

 Fish samples were collected with approval from the Appalachian State University 

Institutional Animal Care Use and Committee (IACUC) protocol #09-6 using an 

electroshocking boat, identified to species, external pathologies noted, and total lengths 

recorded. Fish selected for body burden analysis were tagged with site specific colors, stored 

on ice for transport, and taken to the Appalachian State University (ASU) toxicology lab. The 

fish selected for analysis were the adult largemouth bass (Micropterus salmoides), redear 

sunfish (Lepomis microlophus), gizzard shad (Dorosoma cepedianum), and channel catfish 

(Ictalurus punctatus). In the lab, fish weight and length were recorded and dissected for liver 

(L), muscle (Mu), gonads (testes, T; ovaries, O), stomach (St), gastric caecum (GC), and 

spleen (Sp). The tissues were individually wrapped in aluminum foil, frozen at -20°C, 

lyophilized, and digested with 10 mL 70% OmniTrace nitric acid (EMD Inc., North 

America) and aid of a MARSXpress (CEM, Matthews, NC) following protocol EPA 3051b



 (9). The minimum sample weight of fish tissue to digest and analyze using the ICP-OES was 

determined to be 0.5g (dry wt). This reduced the sample size for many of the smaller organs 

in L. microlophus including the gonads, spleen, liver, and stomach. These organs from the 

same species, site, and day were combined to form composite samples when necessary; 

however, some samples were too small to measure accurately. Winter sampling also resulted 

in reduced sample sizes as fish were most likely deeper habitats that were out of reach of 

electroshocking (>4 meters). 

 Sediment samples (n =1-3 per site) were collected using an Ekman dredge grab 

sampler, homogenized, and stored in Whirl-Paks® on ice for transport. Sediment samples 

were frozen at -20°C, lyophilized, split into triplicates, and digested following protocol EPA 

3051b (9). 

 Water samples were collected for dissolved metals by using a 0.4 µm pore size 

syringe filter (Whatman plc.,  North America) at a depth of 30 cm. Total recoverable metal 

water samples were obtained using 250mL plastic containers at a depth of 30cm using the 

grab sampling method. The samples were immediately fixed with 2.5mL of 70% OmniTrace 

nitric acid and stored on ice for transport. In the lab, the samples were split into 40 mL 

triplicates and digested following protocol EPA 3015 with 10 mL of 70% OmniTrace nitric 

acid and aid of a MARSXpress microwave reactor (10). 

 All samples were analyzed for aluminum (Al), cadmium (Cd), chromium (Cr), copper 

(Cu), nickel (Ni), lead (Pb), and zinc (Zn) concentrations by SW-846 EPA method 6010C 

(11).   

 Gill analyses were conducted on the M. salmoides, L. microlophus, and I. punctatus 

collected on January 2009. Gills were removed in the field, fixed in 4% paraformaldehyde 



solution, and stored on ice for transport. In the lab, gills were microtome cut to 7 µm 

sections, stained with hematoxylin and eosin, and examined using a light microscope with 

image capture capability. 

 Due to heteroscedasticity of our data, they were first ranked by the Wilcoxon signed-

rank test, followed by a non-parametric analysis of variance using the general linear model 

(GLM) using SAS 9.2 (SAS Institute INC., Cary, NC). The differences were then determined 

using Tukey’s Studentized Range test (HSD). Graphs were composed using Minitab 16.1.0 

(Minitab Inc., State College, PA).  

 



Results and Discussion 

Sediment Contamination. Al concentrations were found at the highest 

concentrations, ranging from 106±59 to 12287±1257 mg/kg at TRM567 in March 2009 and 

at CRM3.5 in September 2009, respectively. These values are consistent with the high 

background values found in the soils (9363±3475 mg/kg) and in the CFA composition 

(14109±7264 mg/kg) (12). In January 2011, low values of Al were seen at ERM4.0 while the 

highest values of Al were seen at the downstream TRM567, suggesting the downstream 

movement of the ash-laden sediment and its Al contents. This observed movement of Al may 

be a result of the natural fluvial movement of the system, re-suspension and subsequent re-

entrainment due to dredging and flooding events.  

Cd concentrations were between 0.01 mg/kg at ERM4.0 and 0.22±0.01 mg/kg at 

CRM3.5 in January 2009 (Table 1). In March 2009, an increase in Cd concentration was 

observed at all sites, ranging from 0.6±0.1 to 12±7 mg/kg at CRM3.5 and ERM4.0, 

respectively. However, these high values found in March 2009 were not sustained, returning 

to similar values to those in January 2009 by July 2009. Again in January 2011, the lowest 

values were found at the upstream ERM4.0 while the highest values of Cd were observed at 

TRM567.   

In January 2009, Cr concentrations were initially below the background levels of soils 

(11.9±5.3 mg/kg) ranging from 0.5±0.1 to 3.9±0.1 mg/kg at ERM4.0 and ERM2.0, 

respectively (Table 1). In March 2009 (concurrent with start of dredging activities), these 

values increased greatly, ranging from 20±20 to 35±7 mg/kg at ERM4.0 and TRM567, 



 
 

 
 

respectively. The Cr values never decrease again to those comparable to January 2009 

through the two-year sampling. In January 2011, the value at ERM4.0 was 9.1±8.4 mg/kg, 

about half the concentration observed at the downstream ERM 2.0 (17±4 mg/kg), CRM3.5 

(17±1 mg/kg), and TRM567 (18±1 mg/kg). This again may suggest the downstream 

movement of ash-laden sediment and its associated metals. 

Cu levels were initially high in January 2009 around the spill site at ERM4.0 (46±51 

mg/kg), ERM2.0 (43±20 mg/kg), and ERM0.5 (47±29 mg/kg), about twice the value 

observed downstream at CRM3.5 (20±5 mg/kg) and TRM567 (24±14 mg/kg) (Table 1). 

These values were above the background levels of soil (15.9±35.2 mg/kg), but consistent 

with the levels in the ash (42.2±16.6 mg/kg). A drastic decrease was observed at ERM4.0 in 

July 2009 (9±11 mg/kg) and at ERM2.0 (5.9±0.4 mg/kg) in January 2010; this may suggest 

the downstream movement of Cu or removal by dredging.  

Ni showed a trend similar to that observed in Cr; initial concentrations in January 

2009 were below the background levels in soil (4.4±4.7 mg/kg), ranging from 0.7±0.4 to 

3.8±0.7 mg/kg at ERM4.0 and ERM2.0, respectively (Table 1). There was a statistical 

increase in March 2009 (concurrent with dredging activities), where values ranged from 

19±3 to 46±30 mg/kg at TRM567 and ERM4.0, respectively (see supporting document). 

These values decreased at ERM4.0 by July 2009, where the values are about half of those 

seen at ERM2.0 and the downstream sites, suggesting the movement of uncontaminated 

sediments from upstream.  

Pb values were initially between 1.2±0.4 and 4±1 mg/kg in January 2009 at TRM567 

and ERM0.5, respectively, well below the background concentration for both nearby soils 

(16.5±8.4 mg/kg) and ash compositions (19±7 mg/kg) (Table 1). In March 2009, the Pb 



 
 

 
 

concentrations were significantly elevated and remained elevated throughout the two-year 

samplings, ranging from 7±1 mg/kg at ERM2.0 in January 2010 to 20±2 mg/kg at ERM2.0 in 

July 2009 (Table 1). In January 2011, the highest values are seen at the downstream TRM567 

(18±2 mg/kg) while the lowest value was observed at ERM4.0 (9±6 mg/kg), suggesting the 

downstream movement of the ash-laden sediments and its associated Pb contents. 

Zn values were all initially below instrument detection limit and below the 

background soils (29.7±1.4 mg/kg) at all sites (Table 1). Subsequently, the values at all sites 

were elevated in March 2009, where values ranged from 38±11 mg/kg to 92±11 mg/kg at 

ERM4.0 and TRM567, respectively. These values remained elevated throughout the two-

year sampling. In January 2011, the highest values were seen at TRM567 (72±11 mg/kg), 

while the lowest values were observed at ERM4.0 (26±11 mg/kg), again, suggesting the 

downstream movement of the ash-laden sediment.  

 During May 2010 and the increased discharge, a common trend can be seen in the 

sediment load in all elements where a successive increase in concentration was observed 

from upstream to downstream (Table 1). This supports the movement of metals downstream 

due to re-suspension and subsequent re-entrainment of sediments during flooding periods. 

 In conclusion, concentrations of Cd, Cr, Ni, Pb, and Zn increased during the dredging 

period, which commenced in March 2009. Subsequently in all metals observed, values 

decreased at the upstream sites, especially at ERM4.0, as uncontaminated sediment moved in 

from further upstream. A concomitant increase in the downstream sites at CRM3.5 and 

TRM567 was observed as the ash-laden sediments moved downstream from ERM4.0 and 

ERM2.0. A common trend was seen in all elements at CRM5.5, where changes in 

concentration were not observed as expected. CRM5.5 is 3.2 km downstream of the Emory 



 
 

 
 

River spill site and 2.4 km upstream from the confluence of the Clinch and Emory Rivers; 

very little coal ash made it this far, which was visually confirmed during sampling. 

Water Contamination. Water chemistry results indicate that the Clinch River before 

merging with the Emory River is moderately hard to hard while that of the Emory River is 

soft to slightly hard (Table 2) (13).  The Tennessee River has slightly hard to moderately 

hard water, most likely due to dilution by the Emory River. The pHs of these rivers are 

similar to each other, ranging from 6.89 to 8.83 (Table 2). Under these conditions, the toxic 

metals can form soluble and insoluble complexes with substrates which exhibit limited 

bioavailability due to the formation of less reactive compounds (5). Due to the amount of 

suspended ash in the river, turbidity at ERM2.0 in January 2009 was at 40550 NTU, over 

2000 times higher than CRM5.5; turbidity at ERM2.0 subsequently decreased to comparable 

values to the other collection sites by March 2009 (Table 2). Normal episodes of increased 

turbidity can be observed (e.g. May 2010), corresponding to the increase in discharge 

following rainfall events (Table 2) (14).  

Immediately following the spill, Al concentrations were elevated for both total 

recoverable and dissolved water samples, exceeding the EPA criterion continuous 

concentration (EPA CCC) of 87µg/L (Table 3) (15). The EPA CCC is the recommended 

water criterion for a given contaminant for the protection of aquatic life and is based on the 

dissolved portion of water samples for chronic exposure (15).  In January 2009, total 

recoverable Al concentrations ranged from 1662±42 to 4489±62 µg/L and the dissolved 

values ranged from 1169±24 to 2182±20 µg/L. Subsequent data suggests a decrease which 

was evident in March 2009 and which continued over the two year period to concentrations 



 
 

 
 

below the EPA CCC; by January 2011, the maximum total recoverable Al and dissolved 

aluminum were 389±49 and 56±2 µg/L, respectively. 

Total recoverable Cd concentrations were highest during the July 2009 sampling 

(concurrent with dredging activities); the highest observed value was 14.1±0.3 µg/L (Table 

3). By January 2011, maximum total recoverable Cd values had decreased to 0.4±0.1 µg/L. 

The dissolved Cd concentrations ranged from 0.14±0.04 to 5.6±0.1 µg/L, above the EPA 

CCC of 0.25µg/L at some of the sites. Despite the EPA CCC of 0.25µg/L, the bluegill 

sunfish’s (Lepomis macrochirus) one-year exposure to 31µg/L dissolved Cd had no effect on 

survival, while concentrations of 80-239 µg/L reduced survival rates by greater than 50% 

(14). Similarly, 120 day exposure to 80 µg/L dissolved Cd had no effect on M. salmoides 

survival or growth (16). These values are well above the observed values during this research 

and should not be of toxicological concern.  

Chromium can become acutely toxic to aquatic fish at dissolved Cr concentrations 

between 24-72 mg/L depending on the duration and sensitivity of the species of interest (17). 

The EPA CCC for Cr is 74 µg/L (15), although the highest dissolved Cr level observed 

during the two-year study was 1.8±0.1 µg/L (Table 3), well below the toxic threshold of even 

the most sensitive species (17).  Total recoverable Cr concentration reached 344±23 µg/L, 

five days after the spill in December 2008 at ERM2.0, three orders of magnitude greater than 

the concentration seen in January 2011. However, there is no EPA CCC for total recoverable 

metals; these values were also not sustained, decreasing to 4±1 µg/L by January 2009 and 

should not be of concern.  

Dissolved Cu concentrations were initially elevated in January 2009 at CRM5.5 and 

ERM2.0 with values of 28±17 and 32±2 µg/L, respectively, which are both above the EPA 



 
 

 
 

CCC of 9 µg/L (Figure 3). These values were not sustained at either site, decreasing to 

concentrations of below the instrument detection limit at CRM5.5 and ERM2.0, respectively, 

by March 2009 and should not be of toxicological concern. Total recoverable Cu value in 

December 2008 at ERM2.0 was 1025±121 µg/L, three orders of magnitude greater than the 

concentration seen in January 2011. However, by January 2009 the concentration had 

decreased to 46±5 µg/L and continued to decrease over the two year period with seasonal 

spikes.  

Total recoverable Ni concentrations ranged from 363±43 to 2.5±0.5 µg/L in 

December 2008 and January 2011, respectively, decreasing two orders of magnitude over the 

two-year period. Dissolved Ni concentrations ranged from 0.8±0.6 to 4.9±0.8 µg/L, well 

below the EPA CCC value of 52µg/L (15) and should not be of toxicological concern. 

The current EPA CCC for Pb is 2.5µg/L though subject to change due to current 

investigations (15). Our observed values for dissolved Pb exceeded this value in September 

2010 with maximum values of 27±15 µg/L at ERM2.0 (Table 3). In the L. macrochirus, 

chronic laboratory flow-through exposure to 775µg/L Pb for 660 days had no effect on 

survival, growth, or reproduction (17). In conclusion, further investigation should be 

conducted to fully assess the chronic exposure of Pb to fish and narrow down the broad range 

of thresholds to species specific values. 

The dissolved Zn concentrations measured in September 2010 showed elevated levels 

(92±29 µg/L) close to the EPA CCC  (120 µg/L), though the subsequent values in January 

2011 show lower levels (Table 3) (15). Elevated levels were not sustained and did not exceed 

the EPA CCC over time so it should not be of toxicological concern.   



 
 

 
 

Fish Tissue Results. Dorosoma cepedianum. Whole D. cepedianum samples were 

only processed for May 2010 and September 2010 collections. At ERM4.0, significant 

differences were seen in Cr, Ni, and Pb concentrations. Mean Cr values increased from 0.9 to 

6.1 mg/kg, mean Ni values increased from 0.4 to 3.6 mg/kg, and Pb values increased from 

1.2 to 3.2 mg/kg (see supporting documents). At ERM2.0, significant differences were 

observed in Cr, Cu, and Ni concentrations. Mean Cr values increased from 1 to 14 mg/kg, 

mean Cu concentrations increased from 6.8 to 11.5 mg/kg, and Ni concentrations increased 

from 0.2 to 7.4 mg/kg (see supporting documents). No significant differences in whole body 

burdens were observed at CRM3.5. At TRM567, significant differences in whole body 

burdens were observed again in Cr, Cu, Ni, and Pb. Mean Cr concentrations increased from 

0.7 to 11.2 mg/kg, mean Cu concentrations increased from 6.7 to 9.3 mg/kg, mean Ni 

concentrations increased from 0.8 to 5.4 mg/kg, and mean Pb concentrations increased from 

1.4 to 4.7 mg/kg (see supporting documents).  

 At ERM2.0, D. cepedianum muscle samples were available in July 2009 and May 

2010; during this time significant differences were observed in Cr, Cu, Pb, and Zn. Mean Cr 

concentrations increased from 0.4 to 1.4 mg/kg, mean Cu concentrations increased from 1 to 

4 mg/kg, mean Pb concentrations increased from 0.2 to 1.8 mg/kg, and mean Zn 

concentrations increased from 16 to 36 mg/kg (see supporting documents). At CRM3.5, 

significant differences in muscle burdens were observed in Cr, Cu, Ni, Pb, and Zn. Mean Cr 

concentrations increased from 0.3 to 1.2 mg/kg, mean Cu concentrations increased from 1.7 

to 4.3 mg/kg, mean Ni concentrations increased from 0.2 to 0.9 mg/kg, mean Pb 

concentrations increased from 0.3 to 0.9 mg/kg, and mean Zn concentrations increased from 

0 to 30 mg/kg (see supporting documents).  



 
 

 
 

Cr values at ERM2.0 and CRM3.5 in the muscle tissue had mean values of 1.4 and 

1.2 mg/kg, respectively, in January 2010. Muscle Cr burdens of 1.61 mg/kg in the sensitive 

Rainbow trout (Oncorhynchus mykiss) had no effect on survival and should not be of concern 

for the local fish mortality (18). Mean Cu muscle burdens reached values of 3.7±0.3 and 

4.3±2.3 mg/kg at ERM2.0 and CRM3.5, respectively. Cu concentrations of 3.4 mg/kg had no 

effect on survival, growth, or reproduction in the O. mykiss and should not be of concern 

(19). Mean Ni muscle burdens reached values of 0.37±0.04 and 0.9±0.6 mg/kg at ERM2.0 

and CRM3.5, respectively. Ni concentrations of 0.82 mg/kg had no effect on survival in the 

O. Mykiss (18); in the common carp (Cyprinus carpio), muscle burdens of 46.7 mg/kg 

showed no effect on survival and should not be of concern (20). Mean Pb muscle values 

reached values of 1.8 mg/kg and 0.9 mg/kg at ERM2.0 and CRM3.5, respectively. Mean Zn 

concentrations in the muscles ranged from 36±7 to 31±10 mg/kg at ERM2.0 and CRM3.5 

respectively. In the M. salmoides, 100 mg/kg is the known tolerance limit for human 

consumption and should not be of concern (21). 

 In conclusion Cr, Cu, Ni, and Pb accumulated in the whole D. cepedianum samples 

since the spill. Accumulation of these elements was also seen in the muscle samples, 

suggesting that the muscles may be the site of sequestration for these metals. 

 Ictalurus punctatus. Histological gill sections of the I. punctatus caught during the 

January 2009 sampling revealed edema, vasodilation, epithelial proliferation, lamellar 

epithelium lifting, and lamellar fusion at ERM2.0 (Figure 2). This may be a result of the 

overall increase in suspended particles and dissolved metals in the water column at ERM2.0 

during this time. The I. punctatus had the highest concentrations of Al in ovaries, liver, and 

spleen compared to the other species, though differences are not statistically significant (see 



 
 

 
 

supporting documents). This may be associated with their benthic habitat and exposure 

through direct contact with the ash laden sediment which has been shown in our study to 

contain high levels of Al (Table 1).  

Lepomis microlophus. Cd and Cu concentrations were significantly higher in the 

liver compared to the other organs (Figure 3). Cd accumulated in the tissues of interest in the 

following hierarchy: L > GC > Sp > St > T > O > Mu. Cu accumulated in the tissues in the 

following order: L > St > GC > Sp > T > O > Mu. Cd and Cu are known to accumulate in the 

liver tissue as a mechanism to maintain their homeostasis; their accumulation stimulates the 

production of metallothionein (MT) which sequester Cd and Cu to prevent its toxicity (22, 

23, 24). However, despite the significant increase in the liver, the hepatic concentrations of 

Cd were low ranging from 0.15 to 1.54 mg/kg. These values are well below the acute 

toxicityLC50 in the closely related L. macrochirus of 55 mg/kg and may not be of 

toxicological concern (25). In contrast, Cu exhibited relatively high values ranging from 6.9 

to 95 mg/kg. Hepatic concentrations of 96 mg/kg in L. macrochirus have shown reductions in 

survival, growth, and reproduction (17), posing a potential threat to fish such as those 

collected at CRM5.5 where values reached 95±12 mg/kg in January 2010. However, these 

values subsequently decreased to 63±16 mg/kg in September 2010 and 69±41 mg/kg in 

January 2011, escaping toxic threshold levels. Interestingly, CRM5.5 should have been 

minimally impacted by the CFA spill due to its location (Figure 1) which is supported by the 

copper content of the sediment there; therefore, it is possible migration of downstream 

populations up to this site is contributing to the high values observed in the L. microlophus 

liver. No other significant changes were observed in the L. microlophus liver at ERM4.0, 

ERM2.0, CRM3.5, or TRM567.  



 
 

 
 

The L. microlophus feed on benthic organisms including microcrustaceans, larvae, 

snails, and filter-feeding fingernail clams (26). It is intuitive that their benthic feeding 

strategy may also result in the direct consumption of sediments, further exposing themselves 

to harmful contaminants. Though statistically indifferent, the L. microlophus had the highest 

concentrations of all metals examined in the GC compared to the other species of interest 

(see supporting documents). This may indicate the importance of the GC to this species in 

maintaining metal homeostasis.  

In the L. microlophus muscle tissues, significant differences in toxic metal burdens 

were not observed at ERM2.0, CRM5.5, or TRM567 during the two-year sampling. At 

ERM4.0, significant differences were seen in muscle aluminum concentrations between the 

January 2009, May 2010, and September 2010 collections; these values decreased from 64 

mg/kg, to 30 mg/kg, to 9 mg/kg, respectively (Figure 4). These numbers correspond to 

decreasing dissolved and total Al concentrations in the water (Table 1) and the observed 

trend could have resulted from decreased exposure or from immigration of previously 

unexposed fish due to the return of natural habitats. During winter, the Watts Bar Reservoir 

lowers the water level by approximately 2 m for flood control purposes, resulting in the loss 

of littoral habitats and the forced migration into the deeper sections of the system (27). Water 

levels rise again in May, allowing the fish to migrate into various sites. The L. microlophus 

muscle and liver Al burdens were regressed against the sediment Al concentrations because 

they are thought to have the highest site tenure among the species of interest. The linear 

correlation coefficient resulted in an R
2
= 0.01 for muscle and R

2
=0.00008 for liver, 

indicating that body burdens of lead had little dependence on local sediment concentrations 

and that the migration of fish may be responsible for the decrease in muscle Al burdens 



 
 

 
 

observed along with decreased exposure (see supporting documents). At CRM3.5, a 

significant difference in Al muscle concentrations was observed between January and 

September 2010; the values increased from 5±2 to 18±9 mg/kg and remained at these levels 

through January 2011, representing a 3.6 fold increase. There was also an increase in total Al 

concentration in the water at CRM3.5 in May 2010, between January 2010 and September 

2010.  The increase observed in the muscle tissues at CRM3.5 likely resulted from the 

increase in ambient exposure, leading to bioconcentration [bioconcentration factor (BCF) of 

11x] and sequestration into the muscle tissues. Alternatively and/or in combination with the 

increase in ambient exposure, contaminated food availability may have contributed to this 

observed trend. Food availability was likely low in the winter season prior to the collection in 

January 2010, resulting in decreased exposure through lower consumption rates. During the 

spring and summer season preceding the collection in September 2010, the fish had ample 

opportunity to forage, which potentially lead to the increase in Al bioconcentration (28).  

Micropterus salmoides. Similar to the L. microlophus, Cd and Cu concentrations 

were the highest in the liver compared to the other organs of interest (Figure 3). The 

accumulation into the various organs for Cd was in the following hierarchy: L > GC > Sp > T 

> O > St > Mu. The accumulation into organs for Cu was in the following order: L > O > St 

> GC > T > Sp > Mu. 

M. salmoides did not exhibit significant differences in tissue metal levels or levels 

that raise toxicological concerns except for muscle Al concentrations at ERM4.0 and 

CRM5.5. A significant decrease in Al muscle burdens were seen at ERM4.0 where values 

dropped from 34±3 to 7±3 mg/kg between January 2009 and May 2010 (Figure 4). Again, 

these numbers correspond to decreasing dissolved and total Al concentrations in the water 



 
 

 
 

(Table 1) and the observed trend could have resulted from decreased exposure or from 

immigration of previously unexposed fish due to the return of natural habitats. CRM5.5 

showed an increasing trend with concentrations peaking in September 2010 with an average 

of 14±8 mg/kg (see supporting documents). Again, this site is minimally impacted by the 

CFA spill and except for ERM4.0 had consistently had the lowest sediment levels of Al, so 

fish migration from areas of higher exposure may be responsible for the levels of fish 

contamination at this site.  

Comparing a collection at ERM14.0, 20 km upstream of the spill to ERM2.0 at the 

spill site in March 2009, a difference in bioconcentration factor was observed for Cr and Zn 

based on available dissolved water and muscle samples. A bioconcentration factor of 4321 

and 4242 were observed at ERM14.0 for Cr and Zn, respectively. A bioconcentration factor 

of 182 and 586 were observed at ERM2.0 for Cr and Zn, respectively, despite the higher 

concentration of the two metals dissolved in the water column at ERM2.0 and similar water 

hardness. This suggests increased competition for uptake by the biotic ligands at ERM2.0 

where higher levels of metals were present.  

The inability to detect differences in concentration over time may be due to the 

extensive home range occupied by M. salmoides. In systems with abundant course woody 

habitats (CWH), M. salmoides will generally maintain small home ranges in the littoral 

regions and exhibit a sit-and-wait strategy to conserve energy (27). In systems like the Watts 

Bar reservoir, human influences (e.g. removal of woody debis and winter draw down of 

water levels) have greatly altered the littoral regions for lakeshore residential development 

and recreational uses and thereby reduced the CWH in the littoral regions. In areas with low 



 
 

 
 

CWH, the M. salmoides will shift their foraging strategy to an active searching method and 

hence increase their home range (27).   

Conclusion. In January 2011, two years following the spill, a common trend can be 

seen in the sediments among all metals; the upstream sites have lower values than the 

downstream ones, suggesting the importance of fluvial movement of the sediments and 

associated metals. Dissolved metal concentrations in the water were initially high in January 

2009, exceeding the EPA CCC for Al, Cu, and Pb, though by our March 2009 sampling all 

metals examined were below the EPA CCC. In the D. cepedianum, Cr, Cu, Ni, Pb, and Zn 

body burdens were elevated at the sites proximal to the spill. I. punctatus gill histopathology 

showed alterations in gill morphology consistent with toxic metal exposure in the proximity 

to the spill. An episode of increased hepatic Cu burdens were observed at CRM5.5 in the L. 

microlophus indicating that they may have migrated away from the spill impacted zone. The 

M. salmoides caught at ERM14.0 had a higher BCF compared to those caught at ERM2.0 for 

Cr and Zn, suggesting increased competition for uptake by the biotic ligands at ERM2.0 

where higher levels of metals were present. The long term consequences on development and 

reproduction are uncertain given the complexity of the possible interactions of the metals 

released into this system and should be further examined.  

The Watts Bar reservoir is an extensive system that encompasses 1,162 km of 

shoreline and over 156,192 km
2
 of water surface (29). Despite the never-before-seen amount 

of CFA entering the system, the sheer size of this system in tandem with the discharge from 

the three contributing rivers (20,350 cfs) and migration of fishes may dilute the effects of the 

contamination to prevent adverse long-term consequences (24, 28). The constant migrations 



 
 

 
 

of fish populations have repopulated initial losses of communities following the spill (see 

supporting documents).  

Though the TVA spill was catastrophic, it created a large scale field study that will 

ultimately lead to the better understanding of the effects of large scale CFA releases and its 

associated toxic elements on open aquatic ecosystems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

TABLE 1. Average Metal Concentrations (mg/kg) in Sediments Associated with the TVA Coal Ash Spill Area in Kingston, 

TN. 

 

  
Days Since Spill background**** IDL 

 

 
17 88** 228 379 499*** 676 793  soils  ash µg/L 

A
l*

 

CRM5.5 NA 124.1±3.4 NA 6030±1685 6737±620 9012±1904 6008±1695 
 

    

ERM4.0 208±28 106±59 NA 4733±4036 6731±2507 3887±1765 4715±4010 
 

    

ERM2.0 1453±27 193±84 NA 9191±931 8383±508 11588±27 9167±969 9363 14109   

ERM0.5 NA NA NA NA N A NA NA ±3485 ±7264 100 

CRM3.5 1508±40 167±25 5204±4934 8830±341 11323±673 12287±1257 8807±345 
 

    

TRM567 1224±49 160±20 9577±710 10114±599 NA 11299±600 10122±522 
 

    

C
d

 

CR 

M5.5 
NA 0.71±0.02 0.6±0.4 1.3±0.1 1.2±0.1 0.52±0.03 0.3±1   

 
  

ERM4.0 0.01 12±7 0.2±0.3 NA 0.6±0.2 0.3±0.1 0.2±0.1   
 

  

ERM2.0 0.11±0.04 0.6±0.06 0.66±0.03 0.76±0.04 0.6±0.2 0.5±0.1 0.4±0.1 0.01 0.03   

ERM0.5 0.07±0.06 NA 0.6±0.5 1.5±0.1 NA 0.5±3 NA ±0.21 ±0.08 0.2 

CRM3.5 0.22±0.01 0.6±0.1 0.61±0.06 1.4±0.1 1.2±0.1 0.5 0.37±0.04   
 

  

TRM567 0.1 16±8 0.6±0.1 1.5±0.1 1.5±0.3 0.6±0.1 0.5±0.1       

C
r 

CRM5.5 NA 18.6±0.3 17 13.7 14 16 15 
 

    

ERM4.0 0.5±0.1 20±20 7.7±8.1 NA 10±8 14±9 9.1±8.4 
 

    

ERM2.0 3.9±0.1 30±15 36±2 8.7±0.2 11±5 23±6 17±4 11.9 24.8   

ERM0.5 3.3±0.1 NA 18±3 19±2 NA 21.9±0.1 NA ±5.3 ±7.6 0.4 

CRM3.5 3.3±0.1 24±2 25±3 17±2 20±1.6 22±2 17±1 
 

    

TRM567 2.5±0.2 35±7 18±4 20±3 22±3 20±2 18±1       

C
u
 

CRM5.5 NA NA 16±4 14±1 14±1 16±4 15±5 
 

    

ERM4.0 46±31 NA 9±11 NA 15±15 21±11 13±16 
 

    

ERM2.0 43±20 46±30 52±4 5.9±0.4 17±7 34±11 21±5 15.9 46.2   

ERM0.5 47±29 NA 26±2 26±1 NA 30.2±0.2 NA ±35.2 ±16.6 4.4 

CRM3.5 20±5 39±4 33±2 26±1 30±5 37±2 31±5 
 

    

TRM567 24±14 35±7 25±10 24±1 34±13 32±2 31±2       

N
i 

CRM5.5 NA 18±1 15±1 13±1 14±1 17±4 11±1 
 

    

ERM4.0 0.7±0.4 46±30 10±11 NA 10±5 15±8 10±7 
 

    

ERM2.0 3.8±0.7 27±8 26±3 9.1±0.3 12±6 22±4 19±3 4.4 23   

ERM0.5 3.1±0.2 NA 19±1 19±2 NA 23.1±0.2 NA ±4.7 ±8 0.6 

CRM3.5 2.9±0.2 23±1 22±1 17.6±0.4 19±1 21±3 17±1 
 

    

TRM567 2.01±0.28 19±3 15±4 16±1 30±25 22±2 19±1       

P
b

 

CRM5.5 NA 17.7±0.1 15±1 12.9±0.1 15±1 17±1 14±3 
 

    

ERM4.0 2±1 9±5 8±7 NA 8±4 10±5 9±6 
 

    

ERM2.0 3±1 19±6 20±2 7±1 9±4 15±4 13±2 16.5 19   

ERM0.5 4±1 NA 13±2 13.4±0.2 NA 17.3±0.2 NA ±8.4 ±7 4.5 

CRM3.5 2±1 18±2 14±1 13.2±0.4 14±1 18±3 15±2 
 

    

TRM567 1.2±0.4 18±2 17±1 14±3 31±37 17±1 18±2       

Z
n

 

CRM5.5 NA 73±2 71±5 53±1 64±7 62±7 52±7 
 

    

ERM4.0 IDL 38±11 33±30 NA 27±10 43±16 26±11 
 

    

ERM2.0 IDL 69±41 54±4 31±2 34±15 56±12 53±10 29.7 40.4 2.9 

ERM0.5 IDL NA 57±11 56±2 NA 65±1 NA ±1.4 ±12.2   

CRM3.5 IDL 79±9 80±48 50±2 58±3 69±8 56±5 
 

    

TRM567 IDL 92±11 73±11 61±2 92±28 76±9 72±11       

 

Concentrations are reported in mg/kg dry weight and are reported as mean value ± standard deviation. Elements are indicated as aluminum 

(Al), cadmium, (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn). IDL refers to the instrument detection limit 

reported in µg/L and NA refers to samples that were not analyzed. Collections dates are indicated as 17 days since spill (January 2009), 88 

days since spill (March 2009), 228 days since spill (July 2009), 379 days since spill (January 2010), 499 days since spill (May 2010), 676 

days since spill (September 2010), and 793 days since spill (January 2011). * Indicates elements that had values above the highest standard 

and were extrapolated from the slope; ** indicates when dredging commenced, *** indicates when dredging was terminated; and **** 

indicates background levels of the nearby soils and coal ash composition that were collected and analyzed by the Tennessee Department of 

Environment and Conservation and the Tennessee Department of Health. 



 
 

 
 

TABLE 2. Water Chemistry Results at Sites  Associated with the TVA Coal Ash Spill Area in Kingston, TN. 

         

  
Days Since Spill 

  
 

17 88** 228 379 499*** 676 793 

C
R

M
5
.5

 
total hardness (mg/L) NA 110±4 98±1 193±2 97±2 123±4 51±1 

dissolved hardness (mg/L) NA 140±2 NA NA 92±1 103±2 64±1 

pH 7.45 8.08 7.63 7 7.87 8.42 7.8 

temperature (°C) 9.2 12.5 27.6 7.3 23.1 23.7 7.54 

turbidity (NTU) 20 13 6 5.17 47.3 4.5 10.6 

conductivity (µS/cm) NA 306 232.1 259.4 213.7 242.2 277 

discharge (cfs)* 10900 3560 925 1970 8010 384 2670 

E
R

M
4
.0

 

total hardness (mg/L) NA NA 40±1 37±2 NA 102±3 27±2 

dissolved hardness(mg/L) NA NA NA NA 25±1 88±2 28.2±0.2 

pH 6.93 NA 7.64 7.68 7.09 8.15 6.89 

temperature (°C) 8.4 NA 28 2.69 21.3 24.4 4.69 

turbidity (NTU) 21 NA 11 15.4 13.8 NA 7 

conductivity (µS/cm) 54.4 NA 104.8 65.1 48.3 199 55.6 

discharge (cfs)* 4420 1970 503 1130 2660 21 1220 

E
R

M
2
.0

 

total hardness (mg/L) NA 22±7 54.1±0.4 43.8±0.3 34±1 117±10 26±2 

dissolved hardness (mg/L) NA 21±1 NA NA 23±2 111±3 28.7±0.2 

pH 6.72 7.98 8.15 7.33 6.82 8.37 6.9 

temperature (°C) 9.3 14.1 28.8 3.2 19.2 24.2 5.01 

turbidity (NTU) 40550 13.5 12 13.4 58 3 8.2 

conductivity (µS/cm) 289 63.25 134.7 73.5 49.6 245.3 55.7 

discharge (cfs)* 4420 1970 503 1130 2660 21 1220 

C
R

M
3
.5

 

total hardness (mg/L) NA 101±16 91±2 185±96 51±1.4 121±1 51±1 

dissolved hardness (mg/L) NA 123±17 NA NA 47±5.2 104.8±0.4 63.8±0.4 

pH 7.41 8.44 7.64 7.28 7.81 8.2 7.86 

temperature (°C) 9 12.3 29.5 6.9 20 25.7 7.5 

turbidity (NTU) NA 14.83 7 5.63 59.6 4.5 6.7 

conductivity (µS/cm) 188 261.73 218.3 244.1 177.1 241 278 

discharge (cfs)* 15320 5530 1428 3100 10670 405 3890 

T
R

M
5
6
7
 

total hardness (mg/L) NA NA 80±2 71±1 65±1 99±14 110±4 

dissolved hardness (mg/L) NA NA NA NA 65±1 75±3 52.8±0.2 

pH 7.42 NA 8.11 6.98 8.83 7.81 7.7 

temperature (°C) 9.6 NA 26 5.3 21.6 24.1 7.93 

turbidity (NTU) NA NA 7 15.4 17.5 5 12.9 

conductivity (µS/cm) 157.2 162.4 186 159.7 138.2 160.1 211 

discharge (cfs)* NA NA NA NA NA NA NA 

E
R

M
1
4

.0
 

total hardness (mg/L) NA 20±2 NA NA NA NA NA 

dissolved hardness (mg/L) NA 19.5±0.1 NA NA NA NA NA 

pH NA 8.02 NA NA NA NA NA 

temperature (°C) NA 11.3 NA NA NA NA NA 

turbidity (NTU) NA 7 NA NA NA NA NA 

conductivity (µS/cm) NA 60.7 NA NA NA NA NA 

discharge (cfs)* 4420 1970 503 1130 2660 21 1220 

 
 
Total hardness and dissolved hardness are reported in mg/L, as mean value ± standard deviation, and were calculated using [Ca 

(mg/L)*2.417] + [Mg (mg/L)*4.116].  Temperatures are reported in degrees Celsius (°C), turbidity measurements are reported in 

Nephelometric Turbidity Units (NTU), conductivities are reported as microsiemens per cm, and discharges were reported as cubic feet per 
second. Collections dates are indicated as 17 days since spill (January 2009), 88 days since spill (March 2009), 228 days since spill (July 

2009), 379 days since spill (January 2010), 499 days since spill (May 2010), 676 days since spill (September 2010), and 793 days since spill 

(January 2011). * Indicates discharge data that was provided by the United States Geological Survey National Water Information System 
(30), ** indicates when dredging commenced, and *** indicates when dredging was terminated. 
 

 

 



 
 

 
 

TABLE 3. Average Metal Concentrations (µg/L) in Total Recoverable and Dissolved Metals in Water Samples at Sites Associated with the TVA Coal Ash Spill Area in Kingston, TN. 

 

  
Total Recoverable Metals in Water Samples Dissolved Metals in Water Samples 

  

     
Days Since Spill Days Since Spill 

  

     
5 17 88** 228 379 499*** 676 793 17 88** 499*** 676 793 IDL EPACCC 

   

A
l 

*
 

CRM5.5 NA NA 169±3 265±89 181±37 497±52 230±22 198±42 1793±51 177 56±9 224±1 27±2     

   ERM4.0 NA 1662±42 NA 256±6.5 575±16 NA 177±13 345±35 1422±24 NA 62±3 102±34 41±1     

   ERM2.0 3300172±354303 4489±62 188±64 853±28 575±16 1608±187 180±20 261±46 1978±26 94 41±17 110±45 56±2 100 87 

   ERM0.1  480304±164205 NA NA NA NA NA NA NA NA NA NA NA NA     

   CRM3.5 NA 3091±805 210±72 191±7 217±33 859±134 289±36 336±24 1169±24 101 69±15 106±28 15±1     

   TRM567 NA 4516±78 NA 253±14 232±12 483±12 192±51 383±49 2182±20 NA 49±7 46±3 32±2     

   

C
d
  

CRM5.5 NA 0.51±0.04 0.4±0.1 0.01 1.1±0.2 0.7±0.3 7.1±0.1 0.3±0.1 IDL 0.21±0.02 0.3±0.1 5.6±0.1 0.2±0.1     

   ERM4.0 NA 0.5±0.1 NA 14.1±0.3 0.8±0.1 NA 7.5±0.2 0.4±0.1 IDL IDL 0.17±0.04 1.4±0.1 0.3±0.1     

   ERM2.0 8.3±0.5 0.5±0.2 0.3±0.1 10±3 0.9±0.1 0.8±0.1 7.1±0.2 0.2±0.1 0.15±0.06 IDL 0.14±0.04 1.3±0.1 0.33±0.04 0.2 0.25 

   ERM0.1 1.3±0.1 NA NA NA NA NA NA NA NA NA NA NA NA     

   CRM3.5 NA 0.481±0.004 0.4±0.1 13.5±0.2 0.7±0.1 0.8±0.1 8±0.4 0.4±0.1 IDL IDL 0.21±0.02 3.1±0.1 0.26±0.04     

   TRM567 NA 0.5±0.1 NA 12.3±0.3 1.6±1.2 0.8±0.2 8.1±0.1 0.4±0.1 0.2±0.1 IDL 0.2±0.1 1.7±0.3 0.3±0.1     

   

C
r 

 

CRM5.5 NA 0.88±0.08 0.8±0.2 9±1 3.8±1.1 3.3±0.3 8.3±0.2 2.1±0.3 1.9±0.1 0.9±0.3 1.5±0.4 2.2±0.2 0.41±0.04     

   ERM4.0 NA 0.68±0.04 NA 9.7±0.7 2.8±0.5 NA 8.6±0.5 3.2±2.2 0.58±0.07 NA 1.1±0.2 4.1±2.8 0.3±0.1     

   ERM2.0 344±23 4±1 0.6±0.1 6.3±2.4 4±1 5.4±0.7 10±1 2.9±0.4 1.8±0.1 2±1 0.8±0.4 5.9±2.3 0.2±0.1 0.4 74 

   ERM0.1 49±14 NA NA NA NA NA NA NA NA NA NA NA NA     

   CRM3.5 NA 0.89±0.16 1.1±0.3 9.8±0.4 4.1±1.5 4.1±0.6 9.6±0.9 3.2±2.2 0.48±0.05 1.6±0.9 1.4±0.6 2.2±0.2 0.26±0.03     

   TRM567 NA 1.5±0.3 NA 5.7±0.9 4.6±2.1 4±1 9±1 2.7±0.4 0.64±0.03 NA 0.6±0.1 1.7±0.3 0.5±0.1     

   

C
u
  

CRM5.5 NA 33±42 3.7±2.1 16±4 7.7±1.8 9.5±2.8 6.9±0.3 2.2±0.2 28±17 IDL NA 7.8±0.5 1.2±0.1     

   ERM4.0 NA IDL NA 18±2 10±3 NA 4.6±0.3 2.4±0.2 IDL NA NA 4.1±0.5 1.2±0.5     

   ERM2.0 1025±121 46±5 5.7±1.3 14±4 8.7±2.6 12±4 6.7±0.2 2.6±1.5 32±2 IDL NA 5±1 1.6±0.3 4.4 9 

   ERM0.1 95±19 NA NA NA NA NA NA NA NA NA NA NA NA     

   CRM3.5 NA 23±11 4±2 16±1 10±2 8.5±1.6 8.3±1.5 3.2±2.2 IDL IDL NA 5.74±0.01 1.4±0.1     

   TRM567 NA 18±11 NA 12±2 7.9±2.6 10±3 5±2 45±2.4 IDL NA NA 2.7±0.3 1.3±0.2     

   

N
i 

 

CRM5.5 NA 2.7±0.2 2.2±0.4 4.5±0.3 4.2±1.3 4±1 6.7±0.1 2.8±0.4 2.9±0.2 1.5±0.5 NA 2.8±0.1 1.7±0.1     

   ERM4.0 NA 2.7±0.8 NA 4.3±0.5 5.1±0.6 5±1 7±1 2.5±0.5 1.99±0.28 NA 2.5±0.4 1.7±0.4 1.2     

   ERM2.0 363±43 4±1 3.3±0.5 4±1 3.8±0.7 6±1 6.7±0.1 2.6±0.4 4.1±0.4 0.8±0.6 3.1±0.5 4.9±0.8 1.6±0.3 0.6 52 

   ERM0.1 46±12 NA NA NA NA NA NA NA NA NA NA NA NA     

   CRM3.5 NA 3.2±0.4 2.1±0.6 5±1 2.9±0.3 5±1 6.7±0.2 2.5±0.5 2.4±0.4 2±2 3.2±0.5 2.3±0.4 1.4±0.1     

   TRM567 NA 3.7±0.1 NA 2.1±0.3 2.8±0.6 4.7±1.7 6.6±0.9 2.5±1.2 2.3±0.2 NA 2.8 2.2±0.8 1.3±0.2     

   

P
b
  

CRM5.5 NA IDL IDL 3±1 8.5±0.9 2.7±1.3 9±2 7.9±3.9 2.9±0.2 IDL NA 2.7±1.5 1.3±0.4     

   ERM4.0 NA IDL NA 4.3±2.2 1.7 NA 7.4±1.4 15±7 IDL NA 5.8±3.8 11±4.8 0.6±0.1     

   ERM2.0 313±44 6.8±2.3 IDL 6.6±0.7 9.2±7.2 5.2±3.2 22±5 12±4 IDL IDL 4.1±1.8 27±15 0.6 4.5 2.5 

   ERM0.1 29±6 NA NA NA NA NA NA NA NA NA NA NA NA     

   CRM3.5 NA 5.5±2.8 5.4±2.8 8±2 10±8 1.8±0.9 17±6 19±13 IDL IDL 1.82 8.2±1.6 1.3±1.1     

   TRM567 NA IDL NA 13 4±3 8.3±2.3 10±3 17±4 IDL NA 4.2±1.9 4.3±2.5 0.8     

   

Z
n
  

CRM5.5 NA 67±25 69±19 306±199 45±5 46±3 59±14 43±22 28.1±0.2 18±6 NA NA 15     

   ERM4.0 NA 93±55 NA 64±5 37±8 NA 59±10 87±17 29.7±0.2 NA 70±4 NA 1.6±1.5     

   ERM2.0 619±22 53.4±2.7 170±84 51±10 41±3 60±13 65±11 40±15 22.4±0.3 40±25 57±6 NA 4.4±0.9 2.9 120 

   ERM0.1 164±45 NA NA NA NA NA NA NA NA NA NA NA NA     

   CRM3.5 NA 63±24 107±35 50±37 40±9 52±9 64±13 37±22 25±5 29±18 37 NA IDL     

   TRM567 NA 107±81 NA 670±66 84±41 73±15 121±69 24±6 32.5±0.1 NA 73±10 92±29 1.1±0.3     

    

Concentrations are reported in µg/L and are reported as mean value ± standard deviation. Elements are indicated as aluminum (Al), cadmium, (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), 

and zinc (Zn). IDL refers to the instrument detection limit reported in µg/L; EPA CCC refers to the Environmental Protection Agency Criterion Continuous Concentration for chronic exposure, and NA 

refers to samples that were not analyzed. Collections dates are indicated as 5 days since spill (December 2008), 17 days since spill (January 2009), 88 days since spill (March 2009), 228 days since spill 

(July 2009), 379 days since spill (January 2010), 499 days since spill (May 2010), 676 days since spill (September 2010), and 793 days since spill (January 2011).  * Indicates samples that were above 

the highest standard and were extrapolated from the slope, ** indicates when dredging activities commenced, and *** indicates when dredging was terminated.



 
 

 
 

 
 

FIGURE 1. Map of the Collection Sites Associated with the TVA CFA Spill Area in Kingston, TN. The spill site is indicated by the 

triangle and the collection sites are indicated by the circles. Two collection sites are located on the Emory River, Emory River Mile 2.0 and 

4.0 (ERM2.0 and ERM4.0); two collection sites are located on the Clinch River, Clinch River Mile 3.5 and 5.5 (CRM3.5 and CRM5.5), and 
one collection site is located on the Tennessee River, Tennessee River Mile 567 (TRM567). The map was provided by Google Maps 

(http://maps.google.com). 
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FIGURE 2. Histological Gill Sections at 10x magnification of I. punctatus from Sites Associated with the TVA Coal Ash Spill Area 

in Kingston, TN. (A) I. punctatus gill section from Tennessee River Mile 567 (TRM567) and (B-D) I. puctatus gill sections from the spill 

site at Emory River Mile 2.0 (ERM 2.0). (A) shows normal tissue arrangement, while the gills from the 3 ash exposed I. punctatus (B-D) all 

express pathology consistent with toxic metal exposure including edema, vasodilation (VD), epithelial proliferation (EP), lamellar 

epithelium lifting (LEL), and lamellar fusion (LF).   
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FIGURE 3. L. microlophus  and M. salmoides Cadmium and Copper Organ Burdens (mg/kg) 

Including all Collection Dates and Sites Associated with the TVA Coal Ash Spill Area in Kingston, 

TN. Elements are indicated as cadmium (Cd) and copper (Cu) and all concentrations are reported in mg/kg 
dry weight. Organs are indicated as gastric caecum (GC), liver (L), muscle (Mu), ovaries (O), spleen (Sp), 

stomach (St), and testes (T). The boxplots indicate (from top to bottom) the upper ranges, upper quartile 

ranges, medians, lower quartile ranges, the lower ranges and the circles indicate the means. Organs with 

different letters (a,b,c,d) indicate statistical differences among groups at p <0.05. 

 

 

 

 

 



 
 

 
 

 

FIGURE 4. L. microlophus and M. salmoides Muscle Aluminum Concentrations (mg/kg) Over the Two Year Period at Emory 

River Mile 4.0 (ERM4.0) Associated with the TVA Coal Ash Spill Area in Kingston, TN. Aluminum is indicated as Al and all 

concentrations are reported in mg/kg dry weight. Collections dates are indicated as 17 days since spill (January 2009), 499 days since 

spill (May 2010), 676 days since spill (September 2010), and 793 days since spill (January 2011).  The boxplots indicate (from top to 

bottom) the upper ranges, upper quartile ranges, medians, lower quartile ranges, the lower ranges and the circles indicate the means. Days 

with different letters (a,b) indicate statistical differences among groups at p <0.05. 
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FIGURE S1. D. cepedianum Chromium, Nickel, and Lead Whole Body Burdens (mg/kg) at Emory River Mile 4.0 (ERM4.0) 

Associated with the TVA Coal Ash Spill Area in Kingston, TN. Elements are indicated as chromium (Cr), nickel (Ni), and lead (Pb) 
and all concentrations are reported in mg/kg dry weight basis. Collection dates are indicated as 499 days since spill (May 2010) and 676 

days since spill (September 2010). The boxplots indicate (from top to bottom) the upper ranges, upper quartile ranges, medians, lower 

quartile ranges, the lower ranges and the circles indicate the means. Days with different letters (a,b) indicate statistical differences among 
groups at p <0.05. 

  



 

 

 

FIGURE S2. D. cepedianum Chromium, Copper, and Nickel Whole Body Burdens (mg/kg) at Emory River Mile 2.0 (ERM2.0) 

Associated with the TVA Coal Ash Spill Area in Kingston, TN. Elements are indicated as chromium (Cr), copper (Cu), and nickel (Ni) 

and all concentrations are reported in mg/kg dry weight basis. Collection dates are indicated as 499 days since spill (May 2010) and 676 

days since spill (September 2010). The boxplots indicate (from top to bottom) the upper ranges, upper quartile ranges, medians, lower 
quartile ranges, the lower ranges and the circles indicate the means. Days with different letters (a,b) indicate statistical differences among 

groups at p <0.05. 

 



 

 
 

FIGURE S3. D. cepedianum Chromium, Copper, Nickel, and Lead Whole Body Burdens (mg/kg) at Tennessee River Mile 567 

(TRM567) Associated with the TVA Coal Ash Spill Area in Kingston, TN. Elements are indicated as chromium (Cr), copper (Cu) 

nickel (Ni), and lead (Pb) and all concentrations are reported in mg/kg dry weight basis. Collection dates are indicated as 499 days since 

spill (May 2010) and 676 days since spill (September 2010). The boxplots indicate (from top to bottom) the upper ranges, upper quartile 
ranges, medians, lower quartile ranges, the lower ranges and the circles indicate the means. Days with different letters (a,b) indicate 

statistical differences among groups at p <0.05. 

 



 

 

FIGURE S4. D. cepedianum Chromium, Copper, Lead and Zinc Muscle Burdens (mg/kg) at Emory River Mile 2.0 (ERM2.0) 

Associated with the TVA Coal Ash Spill Area in Kingston, TN. Elements are indicated as chromium (Cr), copper (Cu), lead (Pb), and 

zinc (Zn) and all concentrations are reported in mg/kg dry weight basis. Collection dates are indicated as 228 days since the spill (July 

2009) and 499 days since spill (May 2010). The boxplots indicate (from top to bottom) the upper ranges, upper quartile ranges, medians, 

lower quartile ranges, the lower ranges and the circles indicate the means. Days with different letters (a,b) indicate statistical differences 

among groups at p <0.05. 
 

 



 

 

FIGURE S5. D. cepedianum Chromium, Copper, Nickel, Lead, and Zinc Muscle Burdens (mg/kg) at Clinch River Mile 3.5 

(CRM3.5) Associated with the TVA Coal Ash Spill Area in Kingston, TN. Elements are indicated as chromium (Cr), copper (Cu), 

nickel (Ni), lead (Pb), and zinc (Zn) and all concentrations are reported in mg/kg dry weight basis. Collection dates are indicated as 228 

days since spill (July 2009) and 379 days since spill (January 2010). The boxplots indicate (from top to bottom) the upper ranges, upper 

quartile ranges, medians, lower quartile ranges, the lower ranges and the circles indicate the means. Days with different letters (a,b) 

indicate statistical differences among groups at p <0.05. 
 

 



 

 

FIGURE S6. Comparison of Aluminum Concentrations in Liver, Ovaries, and Spleen among I. punctatus, M. salmoides, and L. 

microlophus Including all Collection Dates and Sites Associated with the TVA Coal Ash Spill Area in Kingston, TN. Aluminum is 

indicated as Al and all concentrations are reported in mg/kg dry weight basis. Fish species are indicated as I. punctatus (CC), M. salmoides 
(LMB), and L. microlophus (RES). Organs are indicated as liver (L), ovaries (O), and spleen (Sp). The boxplots indicate (from top to 

bottom) the upper ranges, upper quartile ranges, medians, lower quartile ranges, the lower ranges and the circles indicate the means.  

 



 

 
 

FIGURE S7. Comparison of Aluminum, Cadmium, Chromium, Copper, Nickel, Lead, and Zinc Concentrations in the Gastric 

Caeca among I. punctatus, M. salmoides, and L. microlophus Including all Collection Dates and Sites Associated with the TVA Coal 

Ash Spill Area in Kingston, TN. Elements are indicated as aluminum (Al), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead 

(Pb), and zinc (Zn) and all concentrations are reported in mg/kg dry weight basis. Fish species are indicated as I. punctatus (CC), M. 
salmoides (LMB), and L. microlophus (RES). Organs are indicated as liver (L), ovaries (O), and spleen (Sp). The boxplots indicate (from 

top to bottom) the upper ranges, upper quartile ranges, medians, lower quartile ranges, the lower ranges and the circles indicate the means.  



 

 

FIGURE S8. M. salmoides Muscle Aluminum Concentrations (mg/kg) over the Two Year Period at Clinch River Mile 5.5 

(CRM5.5) Associated with the TVA Coal Ash Spill Area in Kingston, TN. Aluminum is indicated as Al and all concentrations are 

reported in mg/kg dry weight basis. Collections dates are indicated as 88 days since spill (March 2009), 379 days since spill (January 

2010), 499 days since spill (May 2010), 676 days since spill (September 2010), and 793 days since spill (January 2011). The boxplots 

indicate (from top to bottom) the upper ranges, upper quartile ranges, medians, lower quartile ranges, the lower ranges and the circles 

indicate the means. Days with different letters (a,b) indicate statistical differences among groups at p <0.05. 

 



 

 

FIGURE S9. Species Richness over the Two Year Period at all Collection Sites Associated with the TVA Coal Ash Spill Area in 

Kingston, TN. Species richness is reported in numbers of species caught during a 500 second collection period at each site. Collections 

dates are indicated as 88 days since spill (March 2009), 379 days since spill (January 2010), 499 days since spill (May 2010), 676 days 

since spill (September 2010), and 793 days since spill (January 2011).  
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FIGURE S10. Relationship between log10 Liver and Muscle Aluminum Concentrations (mg/kg) from all L. microlophus Samples 

and log10 Sediment Aluminum Concentrations (mg/kg) Over the Two Year Period from all Collection Sites Associated with the TVA 

Coal Ash Spill Area in Kingston, TN. Aluminum is indicated as Al and all concentrations are reported as log10 mg/kg dry weight basis. R2 

indicates the correlation coefficient between the outcomes and their expected values. The slope of the line is indicated as y=mx+b. 
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